Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
نویسندگان
چکیده
Characterizing the quasi-stiffness and work of lower extremity joints is critical for evaluating human locomotion and designing assistive devices such as prostheses and orthoses intended to emulate the biological behavior of human legs. This work aims to establish statistical models that allow us to predict the ankle quasi-stiffness and net mechanical work for adults walking on level ground. During the stance phase of walking, the ankle joint propels the body through three distinctive phases of nearly constant stiffness known as the quasi-stiffness of each phase. Using a generic equation for the ankle moment obtained through an inverse dynamics analysis, we identify key independent parameters needed to predict ankle quasi-stiffness and propulsive work and also the functional form of each correlation. These parameters include gait speed, ankle excursion, and subject height and weight. Based on the identified form of the correlation and key variables, we applied linear regression on experimental walking data for 216 gait trials across 26 subjects (speeds from 0.75-2.63 m/s) to obtain statistical models of varying complexity. The most general forms of the statistical models include all the key parameters and have an R(2) of 75% to 81% in the prediction of the ankle quasi-stiffnesses and propulsive work. The most specific models include only subject height and weight and could predict the ankle quasi-stiffnesses and work for optimal walking speed with average error of 13% to 30%. We discuss how these models provide a useful framework and foundation for designing subject- and gait-specific prosthetic and exoskeletal devices designed to emulate biological ankle function during level ground walking.
منابع مشابه
Comparison lower limb joints stiffness in chronic low back pain patients with healthy people while walking
Introduction: Lower back pain is an orthopedic disease that affects up to 80% of people throughout their lifetime. It seems that the pattern of muscular activity is related to the components of earthquake photography and should be considered when evaluating back pain and its treatment. The aim of this study was to compare the three-dimensional lower limb joints stiffness during loading response...
متن کاملKinematics of Hip, Knee and Ankle During Cross- Slope Walking
Purpose: Little information is available on joint kinematic adaptations during walking on cross-slope surfaces (i.e. a surface incline perpendicular to the direction of locomotion). This study aimed to evaluate the effects of cross-slope surfaces on three-dimensional (3D) kinematics of hip, knee, and ankle joints during stance phase of walking. Methods: This is a quasi-experimental study...
متن کاملDevelopment of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigatio...
متن کاملآنالیز نمودار گشتاور زاویۀ مَفصل مچ پا در سرعتها و مراحل مختلف راهرفتن جهت طراحی پروتز مچپنجه
Objective: Aim of this study was to analysis the ankle moment-angle relation and its characteristics at different gait speeds and phases for using in prosthetic ankle-foot design. Materials & Methods: This was a cross-sectional analytic study in which 20 participants were chosen with assessable sampling method. Gait analysis at different speeds was performed with two force-plates and five hi...
متن کاملQuantitative analysis of human ankle characteristics at different gait phases and speeds for utilizing in ankle-foot prosthetic design
BACKGROUND Ankle characteristics vary in terms of gait phase and speed change. This study aimed to quantify the components of ankle characteristics, including quasi-stiffness and work in different gait phases and at various speeds. METHODS The kinetic and kinematic data of 20 healthy participants were collected during normal gait at four speeds. Stance moment-angle curves were divided into th...
متن کامل